The Digilent Zmod ADC is an open-source hardware SYZYGY™ compatible pod containing a dual-channel ADC and the associated front end. The Zmod ADC is intended to be used with any SYZYGY™ compatible carrier board having the required capabilities.
The analog inputs can be connected to a circuit using SMA cables. Driven by the SYZYGY™ carrier, the Zmod ADC can acquire two simultaneous signals (1 MΩ, ±25V, single-ended, 14-bit, 100 MS/s, 70 MHz+ bandwidth).
The Zmod ADC was designed to be a piece in a modular, HW and SW open-source ecosystem. Combined with a SYZYGY™ carrier, other SYZYGY™ compatible pods, Zmod ADC can be used for a variety of applications: data acquisition systems, closed loop controllers, scopes, etc.

Features

- Channels: 2
- Channel type: single ended
- Resolution: 14-bit
- Input range: ±1V (Low Range) or ±25V (High Range)
- Absolute Resolution: 0.13mV (Low Range) or 3.21mV (High Range)
- Accuracy: ±0.2% of Range
- Sample rate (real-time): 100MS/s
- Input impedance: 1MΩ || 18pF
- Analog bandwidth: 70 MHz @ 3dB, 30 MHz @ 0.5dB, 20 MHz @ 0.1dB
- Input protected to: ±50V

1. Architectural Overview and Block Diagram

This document describes the Zmod ADC’s circuits, with the intent of providing a better understanding of its electrical functions, operations, and a more detailed description of the hardware’s features and limitations. It is not intended to provide enough information to enable complete duplication of the Zmod ADC, but can help users to design custom configurations for programmable parts in the design.

Zmod ADC’s block diagram is presented in Fig. 2 below. The core of the Analog Zmod ADC is the dual channel, high speed, low power, 14-bit, 105MS/s ADC, AD9648. The carrier board is responsible to configure the internal registers of the ADC circuit, provide the acquisition clock and receive the data.

The Analog Input block is also called the Scope, because of similar structure and behavior to such a front end. The signals in this circuitry use a “SC” indexes to indicate they are related to the scope block. Signals and equations also use certain naming conventions. Analog voltages are prefixed with a “V” (for voltage), and suffixes and indexes are used in various ways: to specify the location in the signal path (IN, MUX, BUF, ADC, etc.); to indicate the related instrument (SC, etc.); to indicate the channel (1 or 2); and to indicate the type of signal (P, N, or diff). Referring to the block diagram in Fig. 2 below:

- The Analog Inputs/Scope instrument block includes:
 - Input Divider and Gain Selection: high bandwidth input adapter/divider. High or low-gain can be selected by the FPGA
 - Buffer: high impedance buffer
 - Driver: provides appropriate signal levels and protection to the ADC
 - Scope Reference: generates and buffers reference voltages for the scope stages
 - ADC: the Analog-to-digital converter for both scope channels.
- The Power Supplies and Control block generates all internal supply voltages.
- The MCU works as an I2C memory for two different purposes:
 - The DNA includes the standard SYZYGY™ pod identification information.
 - The Calibration Memory stores all calibration parameters. Except for the “Probe Calibration” trimmers in the scope Input divider, the Zmod ADC includes no analog calibration circuitry. Instead, a calibration operation is performed at manufacturing (or by the user), and parameters are stored in memory. The application software uses these parameters to correct the acquired data and the generated signals.

In the sections that follow, schematics are not shown separately for identical blocks. For example, the Scope Input Divider and Gain Selection schematic is only shown for channel 1 since the schematic for channel 2 is identical. Indexes are omitted where not relevant. As examples, in equation (1) below, \(V_{\text{SCOPE-SMA}} \) does not contain the channel index (because the equation applies to both channels 1 and 2).

![Figure 2. Zmod ADC Block diagram.](image)

2. Scope

2.1. Scope Input Divider and Gain Selection

Fig. 3 shows the scope input divider and gain selection stage.

\(C_5 \) and \(C_6 \) are capacitive trimmers, 3…10pF, -0/+50% tolerance. The worse case range is 4.5…10pF. All other capacitors are 1% tolerance, all the resistors are 0.1%.

The IC1 relay switches between two symmetrical R-C dividers. Each of them provide:
- Scope input impedance = 1MΩ || 18pF
- Two different attenuations for high-gain/low-gain (25:1)
- Controlled capacitance, much higher than the parasitical capacitance of subsequent stages
- Constant attenuation over a large frequency range (trimmer adjusted)

The maximum voltage rating for scope inputs is limited to:

\[-50V < V_{SCOPE-SMA} < 50V\] \hspace{1cm} (1)

The DC low gain is:

\[\frac{V_{SC-LG}}{V_{SCOPE-SMA}} = \frac{R_3}{R_1 + R_3 + R_5} = 0.04\] \hspace{1cm} (2)

The High Range (at low gain):

\[-25V \leq V_{SCOPE-SMA} \leq 25V\] \hspace{1cm} (3)

The high gain is:

\[\frac{V_{SC-HG}}{V_{SCOPE-SMA}} = \frac{R_4 + R_6}{R_2 + R_4 + R_6} = 0.96\] \hspace{1cm} (4)

The Low Range (at high gain):

\[-1V \leq V_{SCOPE-SMA} \leq 1V\] \hspace{1cm} (5)

The two dividers are designed to have the same equivalent impedance (both active and reactive):

\[R_{ech} = R_1 + R_3 + R_5 = R_2 + R_4 + R_6 = 1MΩ\] \hspace{1cm} (6)

Experiments shown that there are significant parasitic capacities of the layout and buffer input stage: \(C_{PH}\) (high gain divider), parallel to \(C_{eCH}\) and \(C_{PL}\) (low gain divider), parallel to \(C_7\). The trimmers should compensate for these parasitic capacities and adjust for perfect matching:

\[C_3 * R_2 = (C_{PH} + C_e) * (R_4 + R_6)\] \hspace{1cm} (7)

\[C_{PH} + C_e = \frac{C_3 * R_2}{R_4 + R_6} = 18pF\] \hspace{1cm} (8)

\[(C_4 + C_5) * (R_1 + R_3) = (C_{PL} + C_7) * R_5\] \hspace{1cm} (9)

\[(C_{PL} + C_7) = (C_4 + C_5) * \frac{(R_1 + R_3)}{R_5}\] \hspace{1cm} (10)

With the chosen values, the correct adjustment results in about mid-position of trimmers \(C_3\) and \(C_e\):

\[C_3 = C_e = 7pF\] \hspace{1cm} (11)

which solves the parasitic capacities as:

\[C_{PH} = 11pF\] \hspace{1cm} (12)

\[C_{PL} = 8.8pF\] \hspace{1cm} (13)

The Low Gain and High Gain dividers have very close equivalent capacitance, within the tolerances and model approximations:

\[C_{HGeCH} = \frac{C_3 * R_2}{R_3 + R_4 + R_6} = C_{ech} = 17.28pF\] \hspace{1cm} (14)

\[C_{LGeCH} = \frac{(C_7 + C_{PL}) * R_5}{R_1 + R_3 + R_4} = 16.03p\] \hspace{1cm} (15)

Experiments show that the equivalent capacitances are even closer than the values above, about 18pF. The computing error mainly derives from trimmer position approximation.

\[C_{ech} = 18p\] \hspace{1cm} (16)

The IC2 relay shorts the \(C_1\) capacitor when DC coupling is desired. Otherwise, \(C_1\) forms a High Pass filter with the selected divider, for AC coupling, with the corner frequency:

\[f_c = \frac{1}{2 * \pi * R_{ech} * (C_{ech} + C_1)} \approx \frac{1}{2 * \pi * R_{ech} * C_1} = 10.6Hz\] \hspace{1cm} (17)
IC1 and IC2 in Fig. 3, are HFD4/4.5L latching relays (possible replacement: IM42GR). The schematic shows the “reset” position. A relay is “set” when a positive voltage is applied at the coil terminals and it is “reset” when a negative voltage is applied (see the polarity on the schematic symbol). The relay keeps state when no current flows through the coil (the terminals are driven at the same voltage or at least one of the terminals is “open”). The nominal coil voltage is 4.5V.

The IC16, IC17 and IC18 in Fig. 4 are A3910EEETR-T drivers for the relays. They feature:
- Low RDS(on) outputs
- Standby mode with zero current drain
- Small 2 x 2 DFN package
- Crossover Current protection
- Thermal Shutdown protection

Normally, all of them have both HIN and LIN inputs “low” or both “High” driving the “OUT” pins “High Z”. To “set” a relay, OUT2 of IC16 is set “Low” (HIN=“Low”, LIN=“High”) and the corresponding OUT pin of IC17 or IC18 is set “High” (HIN=“High”, LIN=“Low”). All other OUT pins are set “High Z”. To “reset” a relay, OUT2 of IC16 is set “High” (HIN=“High”, LIN=“Low”) and the corresponding OUT pin of IC17 or IC18 is set “Low” (HIN=“Low”, LIN=“High”). All other OUT pins are set “High Z”.

IC14 and IC15 in Fig. 5 are 74LV07ABQ open-drain gates used as level translators from VADJ = 1.8V to VCC5V0 = 5V.
- 5 V tolerant inputs and outputs (open-drain) for interfacing with 5 V logic
- Wide supply voltage range from 1.2 V to 5.5 V
- CMOS low power consumption
- Direct interface with TTL levels
- Inputs accept voltages up to 5 V
- Complies with JEDEC standard:
 - JESD8-7A (1.65 V to 1.95 V)
 - JESD8-5A (2.3 V to 2.7 V)
 - JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-B exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C.
Figure 5. Level Translators.

2.2. Scope Buffer

A non-inverting ADA4817 stage provides very high impedance as load for the input divider.

- High speed
 - −3 dB bandwidth (G = 1, RL = 100 Ω): 1050 MHz
 - Slew rate: 870 V/µs
 - 0.1% settling time: 9 ns
- Input bias current: 2 pA typical
- Input capacitance
 - Common-mode capacitance: 1.3 pF typical
 - Differential mode capacitance: 0.1 pF typical
- Low input noise
 - Voltage noise: 4 nV/√Hz at 100 kHz
 - Current noise: 2.5 fA/√Hz at 100 kHz
- Low distortion: −90 dBc at 10 MHz (G = 1, RL = 1 kΩ)
- Linear output current: 40 mA
- Supply quiescent current per amplifier: 19 mA typical
- Powered down supply quiescent current per amplifier: 1.5 mA typical
The ADA4817 is supplied +4.5V/-2.5V. The maximum input voltage swing is:

\[-2.5V < V_{SC-HLG} < 1.7V\] (18)

The maximum output voltage swing is:

\[-1.3V < V_{BUFF} < 3.1V\] (19)

The gain is:

\[\frac{V_{BUFF}}{V_{SC-HLG}} = 1\] (20)

The actual input and output range (for nominal usage) is:

\[-1V < V_{SC-HLG} = V_{BUFF} < 1V\] (21)

The ADA4817 data sheet does not include any explicit or implicit mention of input protection diodes, nor about the maximum current supported by such diodes, so external D1 was added in the schematic for safety. However, the leakage current of D1 adds significant error and experiments proved that the input protection diodes do exist within the ADA4817, so D1 is a "No Load".

The Zmod ADC is specified to resist to accidental input voltages up to +/-50V. In these cases, the buffer input voltage is limited by the protection diodes at 0.6V above the AVCC4V5 or below AVCC-2V5. The protection current is limited by R2 (at High Gain) or R1+R3 (at Low Gain) (see the input divider schematic). The worse case is \(V_{SCOPE-SMA}=-50V\) on High Gain scale:

\[I = \frac{V_{SCOPE-SMA} - V_{AV-CC-2V5}}{R_2} = \frac{-50V + 2.5V}{40.2kohm} = -1.18mA\] (22)

2.3. Scope Reference

In Fig. 7, a low noise reference, ADR3412ARJZ, and an ADA4841-2 OpAmp are used to generate 1V reference voltage for the ADC.

ADR3412ARJZ features:

- Initial accuracy: ±0.1% (maximum)
- Maximum temperature coefficient: 8 ppm/°C
- Operating temperature range: -40°C to +125°C
- Output current: +10 mA source/−3 mA sink
- Low quiescent current: 100 μA (maximum)
- Low dropout voltage: 250 mV at 2 mA
- Output noise (0.1

\[V_{R_{E}F_{A}D_{C}} = \frac{V_{R_{E}F_{1}}} {S_{C} \times 1V} = 1V\] (23)

An ADA4841-2 OpAmp buffers the VCM voltage generated by the ADC to feed the ADC buffer, in Fig. 8.

ADA4841-2:

- Low power: 1.1 mA/amp
- Low wideband noise:
 - 2.1 nV/√Hz
 - 1.4 pA/√Hz
- Low 1/f noise:
 - 7 nV/√Hz @ 10 Hz
13 pA/√Hz @ 10 Hz

- Low distortion: −105 dBc @ 100 kHz, VO = 2 V p-p
- High speed
 - 80 MHz, −3 dB bandwidth (G = +1)
 - 12 V/µs slew rate
 - 175 ns settling time to 0.1%
- Low offset voltage: 0.3 mV maximum
- Rail-to-rail output
- Power down
- Wide supply range: 2.7 V to 12 V

Figure 8. VCM buffer.

The ADC VCM voltage is:

\[V_{\text{CMSC}} = V_{\text{VCMADC}} = V_{\text{VCMADC0V}} \times (1 + \frac{R_{\text{ref}}}{R_{\text{20}}}) = 1.2V \] \hspace{1cm} (24)

An LT1461-2.5 reference generates a voltage used for rising the input common mode voltage of the ADC buffer, in Fig. 10.

LT1461-2.5:

- Trimmed to High Accuracy: 0.04% Max
- Low Drift: 3ppm/°C Max
- Low Supply Current: 50µA Max
- High Output Current: 50mA Min
- Low Dropout Voltage: 300mV Max
- Excellent Thermal Regulation
- Power Shutdown
- Thermal Limiting
- All Parts Guaranteed Functional from −40°C to 125°C
- Voltage Options: 2.5V, 3V, 3.3V, 4.096V and 5V

Figure 9. 2.5V reference.

2.4. Scope Driver

IC2, LTC6406, in Fig. 10 is the ADC driver.

- Low Noise: 1.6nV/√Hz RTI
- Low Power: 18mA at 3V
- Low Distortion (HD2/HD3):
 - −80dBc/−69dBc at 50MHz, 2VP-P
 - −104dBc/−90dBc at 20MHz, 2VP-P
- Rail-to-Rail Differential Input
- 2.7V to 3.5V Supply Voltage Range
- Fully Differential Input and Output
- Adjustable Output Common Mode Voltage
- 800MHz −3dB Bandwidth with ∆V = 1
- Gain-Bandwidth Product: 3GHz
- Low Power Shutdown
- Available in 8-Lead MSOP and Tiny 16-Lead
- 3mm × 3mm × 0.75mm QFN Packages

It is used for:

- Driving the differential inputs of the ADC (with low impedance outputs)
• Providing the common mode voltage for the ADC
• ADC protection: IC2 is supplied 3V, while the ADC inputs only support -0.1…2.1V.

\[
0V \leq V_{\text{LTC6406}} = V_{-\text{LTC6406}} \leq 3V
\]

The actual input common mode voltage is:

The driver gain is:

\[
G_{\text{drv}} = \frac{V_{\text{OUT diff}}}{V_{\text{BUFF}}} = \frac{R_{11}}{R_{12}} = \frac{R_{19}}{R_{14}} = 1.27
\]

The output divider gain:

\[
G_{\text{div}} = \frac{V_{\text{ADC diff}}}{V_{\text{OUT diff}}} = \frac{R_{16}}{R_{13} + R_{16}} = \frac{R_{17}}{R_{15} + R_{17}} = 0.746
\]

The nominal Driver input voltage range is:

\[-1V < V_{\text{BUFF}} < 1V\]

The nominal Driver output voltage range is:

\[-1.27V < V_{\text{OUT diff}} < 1.27V\]

With a unity common mode gain, the driver output common mode voltage is:

\[V_{\text{CMOUT}} = (V_{\text{OUT+}} - V_{\text{OUT-}})/2 = V_{\text{CMSC}} = 1.2V\]

The nominal Buffer output single ended voltage range is:

\[V_{\text{CMOUT}} - V_{\text{OUT diff}}/2 = 1.2V - 1.27/2 = 0.565V < V_{\text{OUT+}}, V_{\text{OUT-}} < V_{\text{CMOUT}} + V_{\text{OUT diff}}/2 = 1.2V + 1.27/2 = 1.835V\]

The maximum nominal driver single ended current is:

\[I_{\text{OUT max}} = \frac{V_{\text{OUT max}}}{R_{13} + R_{16}} = \frac{1.835V}{394\text{ohm}} = 4.65\text{mA}\]

which is below the data sheet limit of 5mA, for covering the driver single ended voltage range above.

For passing at the ADC input, the voltages above are multiplied by the resistive divider gain of \(G_{\text{drv}}\).

The nominal differential ADC input voltage range is:

\[-1V < V_{\text{ADC diff}} < 1V\]
The output divider common mode voltage is close to the recommended 0.9V:

\[V_{CM_{ADC}} = \frac{V_{ADC_P} + V_{ADC_N}}{2} = 0.895V \]

(34)

The ADC input single ended voltage range is:

\[0.395V < V_{ADC_P}, V_{ADC_N} < 1.395V \]

(35)

For the ADC input protection, the maximum driver single ended voltage should be considered. The driver amplifier datasheet only specifies the linear output voltage range. There is no information about the worst case saturated output voltages. Based on the data sheet and measurements, the driver maximum saturated single ended voltage was estimated to:

\[V_{OUT_{max_sat}} < 2.5V \]

(36)

Resulting a stress value at the ADC input:

\[V_{ADC_{max_sat}} = V_{OUT_{max_sat}} \cdot G_{div} = 1.865V \]

(37)

which is less than the allowed voltage at the ADC input = 2.1V.

2.5. Scope ADC

The Zmod ADC uses a dual channel, high speed, low power, 14-bit, 105MS/s ADC (Analog part number AD9648), as shown in Fig. 11.

![ADC Diagram](image)

Figure 11. ADC.

The important features of AD9648:

- SNR = 74.5dBFS @70 MHz
- SFDR =91dBc @70 MHz
- Low power: 78mW/channel ADC core@ 125MS/s
- Differential analog input with 650 MHz bandwidth
- IF sampling frequencies to 200 MHz
- On-chip voltage reference and sample-and-hold circuit
- 2 V p-p differential analog input
- DNL = ±0.35 LSB
- Serial port control options
- Offset binary, gray code, or two's complement data format
- Optional clock duty cycle stabilizer
- Integer 1-to-8 input clock divider
- Data output multiplex option
- Built-in selectable digital test pattern generation
- Energy-saving power-down modes
- Data clock out with programmable clock and data alignment
The differential inputs are driven via a low-pass filter comprised of C114 together with R13, R15, R16, R17 in the buffer stage. The differential clock is AC-coupled and the line is impedance matched. The clock is internally divided by 4 to operate the ADC at a constant 100 MHz sampling rate. The ADC generates the common mode reference voltage (VCM_SC) to be used in the buffer stage.

The digital stage of the ADC and the corresponding FPGA bank are supplied at 1.8V by the SYZYGY™ voltage Vadj.

The multiplexed mode is used, to combine the two channels on a single data bus and minimize the number of used FPGA pins. CLKOUT_SC is provided to the unloaded C115. The signal swept from 800kHz to 80MHz. The effective values of the input and output signals were recorded for each frequency. The signal (at the scope SMA connector) and the output signal (at the input of the FPGA for synchronizing data).

Fig. 12 shows a typical spectral characteristic of the scope input stage. A PXIe-5433 80 MHz Function/Arbitrary Waveform Generator was used to generate the input signal of 0.9V, for High Gain Scale, respectively 10V for the Low Gain scale. A Tektronix DPO5204B scope was used for measuring the reference signal (at the scope SMA connector) and the output signal (at the input of the ADC). A differential probe was used to read the output signal on the pads of the unloaded C115. The signal swept from 800kHz to 80MHz. The effective values of the input and output signals were recorded for each frequency. The measurements were further processed to display the input stage frequency characteristics, as shown in Fig. 10.

For both scales, the 3dB bandwidth is 70MHz+. The 0.5dB bandwidth is 30MHz and the 0.1dB bandwidth is 20MHz.

The standard -3dB bandwidth definition is derived from filter theory. At cutout frequency, the scope attenuates the spectral components by 0.707, assuming an error of ~30%, way too high for a measuring instrument. The bandwidth with a specified flatness is useful to better define the scope spectral performances. The ZmodADC exhibits 30MHz+ @ 0.5dB, meaning that a 30 MHz sinusoidal signal is shown with a flatness error of a max 5.6%, 20MHz @ 0.1dB means that a 5 MHz sinusoidal signal is shown with a flatness error of a max 1.1%.

2.6. Scope Signal Scaling

Combining Gain equations 2, 4, 20, 26, and 27 from previous chapters, the total scope gains are:

\[
\text{Low gain } = \frac{V_{\text{ADC diff}}}{V_{\text{SCOPE-SMA}}} = 0.038 \tag{38}
\]

\[
\text{High gain } = \frac{V_{\text{ADC diff}}}{V_{\text{SCOPE-SMA}}} = 0.91 \tag{39}
\]

Considering the ADC input voltage range shown in Table 3:

at low gain : \(-26.3\text{V} < V_{\text{SCOPE-SMA}} < 26.3\text{V}\)

at high gain : \(-1.1\text{V} < V_{\text{SCOPE-SMA}} < 1.1\text{V}\) \tag{40}

To cover component value tolerances and to allow software calibration, only the ranges below are specified.

at low gain : \(-25\text{V} < V_{\text{SCOPE-SMA}} < 25\text{V}\)

at high gain : \(-1\text{V} < V_{\text{SCOPE-SMA}} < 1\text{V}\) \tag{41}

With the 14-bit ADC, the absolute resolution of the scope is:

at low gain : \(\frac{52.6\text{V}}{2^{14}} = 3.21\text{mV}\) \tag{43}

at high gain : \(\frac{2.12\text{V}}{2^{14}} = 0.13\text{mV}\) \tag{44}

For \(V_{\text{in}}\) voltage value at the input of the Scope channel, the ZmodADC sends a signed 14 bit integer, \(N\). This value is used to compute \(V_{\text{in}}\):

\[
V_{\text{in}} = \frac{N \cdot \text{Range} \cdot (1 + \text{CG})}{2^{13}} + \text{CA} \tag{45}
\]

were:

- \(N\) = the 14 bit, 2's complement integer number returned by the ADC
- \(V_{\text{in}}\) = the corrected value of the input voltage
- \(\text{CA}\) = calibration Additive constant (for the appropriate channel and gain; see Table 3)
- \(\text{CG}\) = calibration Gain constant (for the appropriate channel and gain; see Table 3)
- \(\text{Range}\) = the ideal Range of the Scope input stage (approximation of the values in equation 40):
 - 1.086 (for low range: ±1V) or
 - 26.25 (for high range: ±25V)

2.7 Scope Spectral Characteristics

Fig. 12 shows a typical spectral characteristic of the scope input stage. A PXIe-5433 80 MHz Function/Arbitrary Waveform Generator was used to generate the input signal of 0.9V, for High Gain Scale, respectively 10V for the Low Gain scale. A Tektronix DPO5204B scope was used for measuring the reference signal (at the scope SMA connector) and the output signal (at the input of the ADC). A differential probe was used to read the output signal on the pads of the unloaded C115. The signal swept from 800kHz to 80MHz. The effective values of the input and output signals were recorded for each frequency. The measurements were further processed to display the input stage frequency characteristics, as shown in Fig. 10.
3. MCU

The ATtiny44 MCU in Fig. 13 works as a I2C memory, storing the SYZYGY™ DNA information and the Calibration Coefficients. The J5 connector is used for programming the MCU and the SYZYGY™ DNA at manufacturing.

The DNA and the Factory Calibration Coefficients are stored in the Flash memory of the MCU, which appears to the I2C interface as “read-only”. The User Calibration Coefficients are stored in the EEPROM memory of the MCU, which is write-protected via a magic number at a magic address. The memory structure can be consulted below.

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
<th>Size (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x8000 - 0x80FF</td>
<td>DNA</td>
<td>256</td>
</tr>
<tr>
<td>0x8100 - 0x817F</td>
<td>Factory Calibration</td>
<td>128</td>
</tr>
<tr>
<td>0x8180 - 0x83FF</td>
<td>Future use</td>
<td>896</td>
</tr>
</tbody>
</table>

3.1. SYZYGY™ DNA
The Zmod ADC is compliant with SYZYGY™ Specification. It contains an MCU able to calculate the Geographical Address and provide the DNA information via I2C. The DNA is stored in the MCU FLASH at the address range: 0x8000 - 0x80FF with the following structure:

<table>
<thead>
<tr>
<th>Contents</th>
<th>Type</th>
<th>Size(Bytes)</th>
<th>Value</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA full data length</td>
<td>uint16</td>
<td>2</td>
<td>91</td>
<td>0x8000</td>
</tr>
<tr>
<td>DNA header length</td>
<td>uint16</td>
<td>2</td>
<td>40</td>
<td>0x8002</td>
</tr>
<tr>
<td>SYZYGY DNA major version</td>
<td>uint8</td>
<td>1</td>
<td>1</td>
<td>0x8004</td>
</tr>
<tr>
<td>SYZYGY DNA minor version</td>
<td>uint8</td>
<td>1</td>
<td>0</td>
<td>0x8005</td>
</tr>
<tr>
<td>Required SYZYGY DNA major version</td>
<td>uint8</td>
<td>1</td>
<td>1</td>
<td>0x8006</td>
</tr>
<tr>
<td>Required SYZYGY DNA minor version</td>
<td>uint8</td>
<td>1</td>
<td>0</td>
<td>0x8007</td>
</tr>
<tr>
<td>Maximum operating 5V load (mA)</td>
<td>uint16</td>
<td>2</td>
<td>400</td>
<td>0x8008</td>
</tr>
<tr>
<td>Maximum operating 3.3V load (mA)</td>
<td>uint16</td>
<td>2</td>
<td>100</td>
<td>0x800A</td>
</tr>
<tr>
<td>Maximum VIO load (mA)</td>
<td>uint16</td>
<td>2</td>
<td>270</td>
<td>0x800C</td>
</tr>
<tr>
<td>Attribute flags</td>
<td>uint16</td>
<td>2</td>
<td>0</td>
<td>0x800E</td>
</tr>
<tr>
<td>Minimum operating VIO (10 mV steps)</td>
<td>uint16</td>
<td>2</td>
<td>180</td>
<td>0x8010</td>
</tr>
<tr>
<td>Maximum operating VIO (10 mV steps)</td>
<td>uint16</td>
<td>2</td>
<td>180</td>
<td>0x8012</td>
</tr>
<tr>
<td>Minimum operating VIO (10 mV steps)</td>
<td>uint16</td>
<td>2</td>
<td>170</td>
<td>0x8014</td>
</tr>
<tr>
<td>Maximum operating VIO (10 mV steps)</td>
<td>uint16</td>
<td>2</td>
<td>190</td>
<td>0x8016</td>
</tr>
<tr>
<td>Minimum operating VIO (10 mV steps)</td>
<td>uint16</td>
<td>2</td>
<td>0</td>
<td>0x8018</td>
</tr>
<tr>
<td>Maximum operating VIO (10 mV steps)</td>
<td>uint16</td>
<td>2</td>
<td>0</td>
<td>0x801A</td>
</tr>
<tr>
<td>Minimum operating VIO (10 mV steps)</td>
<td>uint16</td>
<td>2</td>
<td>0</td>
<td>0x801C</td>
</tr>
<tr>
<td>Maximum operating VIO (10 mV steps)</td>
<td>uint16</td>
<td>2</td>
<td>0</td>
<td>0x801E</td>
</tr>
<tr>
<td>Manufacturer name length</td>
<td>uint8</td>
<td>1</td>
<td>12</td>
<td>0x8020</td>
</tr>
<tr>
<td>Product name length</td>
<td>uint8</td>
<td>1</td>
<td>13</td>
<td>0x8021</td>
</tr>
<tr>
<td>Product model / Part number length</td>
<td>uint8</td>
<td>1</td>
<td>13</td>
<td>0x8022</td>
</tr>
<tr>
<td>Product version / revision length</td>
<td>uint8</td>
<td>1</td>
<td>1</td>
<td>0x8023</td>
</tr>
<tr>
<td>Serial number length</td>
<td>uint8</td>
<td>1</td>
<td>12</td>
<td>0x8024</td>
</tr>
<tr>
<td>RESERVED</td>
<td>uint8</td>
<td>1</td>
<td>0</td>
<td>0x8025</td>
</tr>
<tr>
<td>CRC-16 (most significant byte)</td>
<td>uint8</td>
<td>1</td>
<td>0x40</td>
<td>0x8026</td>
</tr>
<tr>
<td>CRC-16 (least significant byte)</td>
<td>uint8</td>
<td>1</td>
<td>0xF0</td>
<td>0x8027</td>
</tr>
</tbody>
</table>

END DATA HEADER

<table>
<thead>
<tr>
<th>Contents</th>
<th>Type</th>
<th>Size</th>
<th>Value</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer name</td>
<td>string</td>
<td>12</td>
<td>Digilent Inc</td>
<td>0x8028</td>
</tr>
<tr>
<td>Product name</td>
<td>string</td>
<td>13</td>
<td>Zmod ADC 1410</td>
<td>0x8034</td>
</tr>
<tr>
<td>Product model / Part number</td>
<td>string</td>
<td>13</td>
<td>Zmod ADC 1410</td>
<td>0x8041</td>
</tr>
<tr>
<td>Product version / revision</td>
<td>string</td>
<td>1</td>
<td>B</td>
<td>0x804E</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Size(Bytes)</th>
<th>Value</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial number</td>
<td>string</td>
<td>12</td>
<td>210396000000</td>
<td>0x804F</td>
</tr>
</tbody>
</table>

3.2. Calibration Memory

The analog circuitry described in previous chapters includes passive and active electronic components. The datasheet specs show parameters (resistance, capacitance, offsets, bias currents, etc.) as typical values and tolerances. The equations in previous chapters consider typical values. Component tolerances affect DC and AC performances of the Zmod ADC. To minimize these effects, the design uses:

- 0.1% resistors and 1% capacitors in all the critical analog signal paths
- Capacitive trimmers for balancing the Scope Input Divider and Gain Selection
- No other mechanical trimmers (as these are big, expensive, unreliable and affected by vibrations, aging, and temperature drifts)
- Software calibration, at manufacturing
- User software calibration, as an option

A software calibration is performed on each device as a part of the manufacturing test. Reference signals are connected to the Scope inputs. A set of measurements is used to identify all the DC errors (Gain, Offset) of each analog stage. Correction (Calibration) parameters are computed and stored in the Calibration Memory, on the Zmod ADC device, both as Factory Calibration Data and User Calibration Data. The WaveForms software allows the user performing an in-house calibration and overwrite the User Calibration Data. Returning to Factory Calibration is always possible.

The Software reads the calibration parameters from the Zmod ADC MCU via the I2C bus and uses them to correct the acquired signals. The structure of the calibration data is shown below:

Table 3. The Calibration Data Structure

<table>
<thead>
<tr>
<th>Heading 1</th>
<th>Name</th>
<th>Size (Bytes)</th>
<th>Type</th>
<th>Flash Address (Factory Calibration)</th>
<th>EEPROM Address (User Calibration)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Magic ID</td>
<td>1</td>
<td>uchar</td>
<td>0xAD</td>
<td>0x8100</td>
</tr>
<tr>
<td></td>
<td>Calibration Time</td>
<td>4</td>
<td>unix timestamp</td>
<td>0x8104</td>
<td>0x7004</td>
</tr>
<tr>
<td></td>
<td>Channel 1 LG Gain</td>
<td>CG</td>
<td>4</td>
<td>float32</td>
<td>0x8108</td>
</tr>
<tr>
<td></td>
<td>Channel 1 LG Offset</td>
<td>CA</td>
<td>4</td>
<td>float32</td>
<td>0x810C</td>
</tr>
<tr>
<td></td>
<td>Channel 1 HG Gain</td>
<td>CG</td>
<td>4</td>
<td>float32</td>
<td>0x8110</td>
</tr>
<tr>
<td></td>
<td>Channel 1 HG Offset</td>
<td>CA</td>
<td>4</td>
<td>float32</td>
<td>0x8114</td>
</tr>
<tr>
<td></td>
<td>Channel 2 LG Gain</td>
<td>CG</td>
<td>4</td>
<td>float32</td>
<td>0x8118</td>
</tr>
<tr>
<td></td>
<td>Channel 2 LG Offset</td>
<td>CA</td>
<td>4</td>
<td>float32</td>
<td>0x811C</td>
</tr>
<tr>
<td></td>
<td>Channel 2 HG Gain</td>
<td>CG</td>
<td>4</td>
<td>float32</td>
<td>0x8120</td>
</tr>
<tr>
<td></td>
<td>Channel 2 HG Offset</td>
<td>CA</td>
<td>4</td>
<td>float32</td>
<td>0x8124</td>
</tr>
<tr>
<td></td>
<td>Reserved Area</td>
<td>68</td>
<td>-</td>
<td>0x8168</td>
<td>0x7068</td>
</tr>
<tr>
<td></td>
<td>Log</td>
<td>22</td>
<td>string</td>
<td>0x817E</td>
<td>0x707E</td>
</tr>
<tr>
<td></td>
<td>CRC</td>
<td>1</td>
<td>uchar</td>
<td>0x817F</td>
<td>0x707F</td>
</tr>
</tbody>
</table>

Table 4. The EEPROM Memory Map

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
<th>Size (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x7000 - 0x707F</td>
<td>User Calibration</td>
<td>128</td>
</tr>
<tr>
<td>0x7080 - 0x70FF</td>
<td>Future Use</td>
<td>128</td>
</tr>
</tbody>
</table>

At the power up the EEPROM memory is protected against write operations. To disable the write protection one has to write a magic number to a magic address over I2C. To re-enable the write protection one has to write a any other number to the magic address.

Table 5. The Write Protection Disable magic number and address

<table>
<thead>
<tr>
<th>Magic Number</th>
<th>Magic Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Power Supplies and Control

This block includes the internal power supplies.

The Zmod ADC gets the digital rails from the carrier board, via the SYZYGY connector:

- VCC5V0 - used for relays and analog supplies
- VCC3V3 - used for the MCU and analog supplies
- Vadj = 1.8V - used for the ADC digital rail

The internal analog rails sequence is:

- AVCC1V8 - ADC analog rail
- AVCC3V0 - ADC driver
- AVCC-2V5, AVCC4V5 - Scope buffer, reference voltage

4.1. AVCC1V8

The analog supply AVCC1V8 is built from VCC5V0 using IC21, an ADP2138 Fixed Output Voltage, 800mA, 3MHz, Step-Down DC-to-DC converter. To insure low output voltage ripple a second LC filter (FB9 in Fig. 9) is added and forced PWM mode is selected.

- Input voltage: 2.3 V to 5.5 V
- Peak efficiency: 95%
- 3 MHz fixed frequency operation
- Typical quiescent current: 24 μA
- Very small solution size
- 6-lead, 1 mm × 1.5 mm WLCSP package
- Fast load and line transient response
- 100% duty cycle low dropout mode
- Internal synchronous rectifier, compensation, and soft start
- Current overload and thermal shutdown protections
- Ultra-low shutdown current: 0.2 μA (typical)
- Forced PWM and automatic PWM/PSM modes

![Figure 14. AVCC1V8](image)

4.2. AVCC3V0

The analog supply AVCC3V0 is built from VCC3V3 using IC22, an ADP122 5.5 V Input, 300 mA, Low Quiescent Current, CMOS Linear Regulator, Fixed Output Voltage. To reduce noise and reduce the crosstalk between supplied circuits, the rail uses individual LC filters: FB3 in Fig. 10, FB6 (Channel 2 ADC Driver - not shown), FB7 in Fig. 7.

- Input voltage supply range: 2.3 V to 5.5 V
- 300 mA maximum output current
- Fixed and adjustable output voltage versions
- Very low dropout voltage: 85 mV at 300 mA load
- Low quiescent current: 45 μA at no load
- Low shutdown current: <1 μA
- Initial accuracy: 2.1% accuracy
- Up to 31 fixed-output voltage options available from 1.75 V to 3.3 V
- Adjustable-output voltage range
- 0.8 V to 5.0 V (ADP123)
- Excellent PSRR performance: 60 dB at 100 kHz
- Excellent load/line transient response
- Optimized for small 1.0 μF ceramic capacitors
- Current limit and thermal overload protection
- Logic controlled enable
- Compact packages: 5-lead TSOT and 6-lead 2 mm × 2 mm LFCSPP
4.3. AVCC4V5

The analog supply AVCC4V5 is built from VCC5V0 using IC19, an ADP123 5.5 V Input, 300 mA, Low Quiescent Current, CMOS Linear Regulator, Adjustable Output Voltage. To reduce noise and reduce the crosstalk between supplied circuits, the rail uses individual LC filters: FB2 in Fig. 6, FB5 (Channel 2 ADC Buffer - not shown), FB8 in Fig. 9.

- Input voltage supply range: 2.3 V to 5.5 V
- 300 mA maximum output current
- Fixed and adjustable output voltage versions
- Very low dropout voltage: 85 mV at 300 mA load
- Low quiescent current: 45 µA at no load
- Low shutdown current: <1 µA
- Initial accuracy: ±2.1% accuracy
- Up to 31 fixed-output voltage options available from 1.75 V to 3.3 V
- Adjustable-output voltage range
- 0.8 V to 5.0 V (ADP123)
- Excellent PSRR performance: 60 dB at 100 kHz
- Excellent load/line transient response
- Optimized for small 1.0 µF ceramic capacitors
- Current limit and thermal overload protection
- Logic controlled enable
- Compact packages: 5-lead TSOT and 6-lead 2 mm × 2 mm LFCSP

4.4. AVCC-2V5

The AVCC-2V5 analog power supply is implemented with the ADP2301 Step-Down regulator in an inverting Buck-Boost configuration. See application Note AN-1083: Designing an Inverting Buck Boost Using the ADP2300 and ADP2301. To reduce noise and reduce the crosstalk between supplied circuits, the rail uses individual LC filters: FB1 in Fig. 6, FB4 (Channel 2 ADC Buffer - not shown). The ADP2301 features:

- 1.2 A maximum load current
- ±2% output accuracy over temperature range
- 1.4 MHz switching frequency
- High efficiency up to 91%
- Current-mode control architecture
- Output voltage from 0.8 V to 0.85 × VIN
- Automatic PFM/PWM mode switching
- Integrated high-side MOSFET and bootstrap diode,
- Internal compensation and soft start
- Undervoltage lockout (UVLO), Overcurrent protection (OCP) and thermal shutdown (TSD)
- Available in ultrasmall, 6-lead TSOT package
5. The SYZYGY™ Connector

The SYZYGY™ connector provides the interface with the carrier board. The used signals are:

- **Power rails**
 - VCC5V0
 - VCC3V3
 - VADJ - needs to be set by the carrier board to 1.8V
 - GND
 - Shield

- **SYZYGY™ I2C bus**
 - MCU_SCL
 - MCU_SDA

- **ADC differential input clock**
 - CLKin_ADC
 - CLKin_ADC

- **ADC single ended output clock**
 - CLKOUT_ADC (coupled with GND in the differential P2C pair)

- **R_GA** for geographical address identification

- **SYNC_ADC** for ADC internal clock divider synchronization

- **ADC data bus**
 - DOUT_ADC_0…13

- **SPI bus**
 - CS_SC1
 - SCLK_SC
 - SDIO_SC

- **Relay control**
 - SCs_xyy_z
6. The SYZYGY™ compatibility table

Table 6. The SYZYGY™ compatibility table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum 5V supply current</td>
<td>400mA</td>
</tr>
<tr>
<td>Maximum 3.3V supply current</td>
<td>100mA</td>
</tr>
<tr>
<td>VIO supply voltage</td>
<td>1.8V</td>
</tr>
<tr>
<td>Maximum VIO supply current</td>
<td>270mA</td>
</tr>
<tr>
<td>Total number of I/O</td>
<td>28</td>
</tr>
<tr>
<td>Number of differential I/O pairs</td>
<td>0</td>
</tr>
<tr>
<td>Width</td>
<td>Single</td>
</tr>
</tbody>
</table>

Written by Mircea Dabacan, PhD, Technical University of Cluj-Napoca Romania

The “SYZYGY™” mark is owned by Opal Kelly.