3.2021

TFT / IPS DISPLAY 160x80 DOTS 0.96”

SPI Interface incl. controller ST7735S

FEATURES

- 0.96” LOW-POWER TFT
- WIDE VIEWING ANGLE ALL AROUND (IPS)
- 500cd/m²
- 3.3 V SINGLE SUPPLY
- -20..+70°C (TOP.)
- 160x80 DOTS
- INCL. CONTROLLER ST7735S
- 4-WIRE AND 3-WIRE SPI
- 27.95x13.5 mm OUTLINE DIMENSIONS

ORDERING CODE

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPS 0.96” – 160X80 DOTS, INCL. ST7735S SPI</td>
<td>EA TFT009-81AINN</td>
</tr>
<tr>
<td>IPS 0.96” – 160X80 DOTS, INCL. ST7735S SPI, WITH PCAP (I²C)</td>
<td>EA TFT009-81AITC</td>
</tr>
</tbody>
</table>
Content

1. Summary
2. General Specification
3. Absolute Maximum Ratings
4. Electrical Characteristics
5. Data Color Coding
6. Power ON/OFF Sequence
7. Reset Timing
8. Optical Characteristics
9. Pinout
10. Reliability
11. Initial Code for Reference
12. Contour Drawing
1. Summary

With its new 0.96" TFT display ELECTRONIC ASSEMBLY launches the worldwide first small-sized displays with high-quality. The IPS technology provide full viewing angle with all-angle color stability management (AACS). This means that color stays same even when viewing angle is changing. So it can be used in portrait mode 80x160 or landscape mode 160x80 direction without any disadvantage.

Display brightness is typ. 500cd/m² and paves the way for manifold applications in industrially and medically field, even for usage at direct sunlight.

The displays provide 3-wire and 4-wire SPI interface which is perfect for pin saving applications.

The version EA TFT009-81AITC comes with a PCAP touch panel. Interface is I²C which makes it easy to read out directly the coordinates.
2. General Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Dimension</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA TFT009-81AINN</td>
<td>160x80 dots IPS display</td>
<td></td>
</tr>
<tr>
<td>EA TFT009-81AITC</td>
<td>160x80 dots IPS display with PCAP touch panel</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>0.96</td>
<td>inch</td>
</tr>
<tr>
<td>Dot Matrix</td>
<td>80 x RGB x 160(TFT)</td>
<td>dots</td>
</tr>
<tr>
<td>Module dimension</td>
<td>13.5(W) x 27.95(H) x 1.54(D)</td>
<td>mm</td>
</tr>
<tr>
<td>Active area</td>
<td>10.8 x 21.696</td>
<td>mm</td>
</tr>
<tr>
<td>Dot pitch</td>
<td>0.135 x 0.1356</td>
<td>mm</td>
</tr>
<tr>
<td>LCD type</td>
<td>TFT, Normally black, Transmissive</td>
<td></td>
</tr>
<tr>
<td>Viewing Angle</td>
<td>80/80/80/80</td>
<td>°</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>1:2</td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td>ST7735S</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>Display SPI Interface / PCAP I²C bus interface</td>
<td></td>
</tr>
<tr>
<td>Backlight Type</td>
<td>LED, Normally White</td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>Glare</td>
<td></td>
</tr>
</tbody>
</table>

Color tone slight changed by temperature and driving voltage.
3. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>TOP</td>
<td>-20</td>
<td>—</td>
<td>+70</td>
<td>℃</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>TST</td>
<td>-30</td>
<td>—</td>
<td>+80</td>
<td>℃</td>
</tr>
</tbody>
</table>

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

1. Temp. ≤60℃, 90% RH MAX. Temp. > 60℃, Absolute humidity shall be less than 90% RH at 60℃
4. Electrical Characteristics

4.1. Operating conditions:

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>VCC</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Supply LCM current</td>
<td>ICC</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>mA</td>
</tr>
</tbody>
</table>

Note: To avoid power supply noise, please avoid using driving conditions close to min. or max. value.
4.2. LED driving conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED current</td>
<td>ILED</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>LED voltage</td>
<td>VLED</td>
<td>2.8</td>
<td>3.0</td>
<td>3.3</td>
<td>V</td>
<td>Note 1</td>
</tr>
<tr>
<td>LED Life Time</td>
<td></td>
<td>–</td>
<td>50000</td>
<td>–</td>
<td>Hr</td>
<td>Note 2, 3, 4</td>
</tr>
</tbody>
</table>

Note 1: There are 1 Groups LED

VLED - **VLED+**

Circuit diagram

Note 2: Ta = 25 °C
Note 3: Brightness to be decreased to 50% of the initial value
Note 4: The single LED lamp case
5. Data Color Coding

5.1. 3-Wire SPI Mode: RGB 5-6-5-bit Input, 65K-Colors, 3AH="05h"

Note 1: Pixel data with the 16-bit color depth information

Note 2: The most significant bits are: Rx4, Gx5 and Bx4

Note 3: The least significant bits are: Rx0, Gx0 and Bx0
5.2. 4-Wire SPI Mode: RGB 5-6-5-bit Input, 65K-Colors, 3AH="05h"

Note 1. Pixel data with the 16-bit color depth information

Note 2. The most significant bits are: Rx4, Gx5 and Bx4

Note 3. The least significant bits are: Rx0, Gx0 and Bx0
6. Power ON/OFF Sequence

Timing when the latter signal rises up to 90% of its typical value.

Timing when the latter signal falls up to 90% of its typical value.
7. Reset Timing

![Diagram of Reset Timing]

<table>
<thead>
<tr>
<th>Related Pins</th>
<th>Symbol</th>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESX</td>
<td>tRESW</td>
<td>Reset Pulse Duration</td>
<td>10</td>
<td>-</td>
<td>us</td>
</tr>
<tr>
<td></td>
<td>tREST</td>
<td>Reset Cancel</td>
<td>-</td>
<td>5</td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>ms</td>
</tr>
</tbody>
</table>

Table 14 Reset Timing

Notes:
1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to registers. This loading is done every time when there is HW reset cancel time (RT) within 5 ms after a rising edge of RESX.
2. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below:

<table>
<thead>
<tr>
<th>RESX Pulse</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorter than 5us</td>
<td>Reset Rejected</td>
</tr>
<tr>
<td>Longer than 5us</td>
<td>Reset</td>
</tr>
<tr>
<td>Between 5us and 8us</td>
<td>Reset Starts</td>
</tr>
</tbody>
</table>

3. During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In -mode.) and then return to Default condition for Hardware Reset.
4. Spike Rejection also applies during a valid reset pulse as shown below:

![Diagram of Spike Rejection]

5. When Reset applied during Sleep In Mode.
6. When Reset applied during Sleep Out Mode.
7. It is necessary to wait 5ms after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.
8. Optical Characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition.</th>
<th>Min</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response time</td>
<td>Tr</td>
<td>θ=0° 、Φ=0°</td>
<td>-</td>
<td>30</td>
<td>40</td>
<td>ms</td>
<td>Note 3</td>
</tr>
<tr>
<td></td>
<td>Tf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrast ratio</td>
<td>CR</td>
<td>At optimized viewing angle</td>
<td>-</td>
<td>800</td>
<td>-</td>
<td>-</td>
<td>Note 4</td>
</tr>
<tr>
<td>Color Chromaticity</td>
<td>Wx</td>
<td>θ=0° 、Φ=0°</td>
<td>0.255</td>
<td>0.305</td>
<td>0.355</td>
<td></td>
<td>Note 2,6,7</td>
</tr>
<tr>
<td></td>
<td>Wy</td>
<td></td>
<td>0.275</td>
<td>0.325</td>
<td>0.375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viewing angle</td>
<td>ΘR</td>
<td>CR≧10</td>
<td>-</td>
<td>80</td>
<td>-</td>
<td>Deg.</td>
<td>Note 1</td>
</tr>
<tr>
<td></td>
<td>ΘL</td>
<td></td>
<td>-</td>
<td>80</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ΦT</td>
<td></td>
<td>-</td>
<td>80</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ΦB</td>
<td></td>
<td>-</td>
<td>80</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brightness</td>
<td></td>
<td></td>
<td>400</td>
<td>500</td>
<td>-</td>
<td>cd/m²</td>
<td>Center of display</td>
</tr>
<tr>
<td>Uniformity</td>
<td>(U)</td>
<td></td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>Note 5</td>
</tr>
</tbody>
</table>

Ta=25±2°C

Note 1: Definition of viewing angle range

![Fig.8.1. Definition of viewing angle](image)

Note 2: Test equipment setup:
After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7 or BM-5 luminance meter 1.0° field of view at a distance of 50cm and normal direction.
Fig. 8.2. Optical measurement system setup

Note 3: Definition of Response time:
The response time is defined as the LCD optical switching time interval between “White” state and “Black” state. Rise time, Tr, is the time between photo detector output intensity changed from 90% to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10% to 90%.

Note 4: Definition of contrast ratio:
The contrast ratio is defined as the following expression.

\[
\text{Contrast ratio (CR)} = \frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}
\]

Note 5: Definition of Luminance Uniformity
Active area is divided into 3 measuring areas (reference the picture in below). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = \(\frac{L_{\text{min}}}{L_{\text{max}}} \times 100\%\)

L = Active area length
W = Active area width
Note 6: Definition of color chromaticity (CIE 1931)
Color coordinates measured at the center point of LCD

Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.
9. Pinout

9.1. LCM PIN Definition

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Function</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPI4W</td>
<td>SPI4W='0', 3-wire SPI. SPI4W='1', 4-wire SPI.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td>No connection</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SDA</td>
<td>Serial interface data</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SCL</td>
<td>Serial interface clock</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>RS</td>
<td>Data/command selection pin (4-wire SPI use)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RES</td>
<td>Reset pin (low active)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CS</td>
<td>Chip selection pin (low active)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
<td>No connection</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>VCC</td>
<td>Power supply.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>LEDK</td>
<td>Back light cathode</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>LEDA</td>
<td>Back light anode</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
</tbody>
</table>
10. Reliability

Content of Reliability Test (Wide temperature, -20°C~70°C)

Environmental Test

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Content of Test</th>
<th>Test Condition</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Temperature storage</td>
<td>Endurance test applying the high storage temperature for a long time.</td>
<td>80°C 200hrs</td>
<td>2</td>
</tr>
<tr>
<td>Low Temperature storage</td>
<td>Endurance test applying the low storage temperature for a long time.</td>
<td>-30°C 200hrs</td>
<td>1,2</td>
</tr>
<tr>
<td>High Temperature Operation</td>
<td>Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.</td>
<td>70°C 200hrs</td>
<td></td>
</tr>
<tr>
<td>Low Temperature Operation</td>
<td>Endurance test applying the electric stress under low temperature for a long time.</td>
<td>-20°C 200hrs</td>
<td>1</td>
</tr>
<tr>
<td>High Temperature/Humidity Operation</td>
<td>The module should be allowed stand at 60°C, 90%RH max</td>
<td>60°C, 90%RH 96hrs</td>
<td>1,2</td>
</tr>
<tr>
<td>Thermal shock resistance</td>
<td>The sample should be allowed stand the following 10 cycles of operation</td>
<td>-20°C/70°C 10 cycles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-20°C 25°C 70°C 30min 5min 30min 1 cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration test</td>
<td>Endurance test applying the vibration during transportation and using.</td>
<td>Total fixed Amplitude: 1.5mm Frequency: 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z 15 minutes each</td>
<td>3</td>
</tr>
<tr>
<td>Static electricity test</td>
<td>Endurance test applying the electric stress to the terminal.</td>
<td>VS±600V (contact), ±800v (air), RS=330Ω CS=150pF 10 times</td>
<td></td>
</tr>
</tbody>
</table>

Note1: No dew condensation to be observed.
Note2: The function test shall be conducted after 4 hours storage at the normal Temperature and humidity after remove from the test chamber.
Note3: The packing have to including into the vibration testing.
11. Initial Code for Reference

GATE = 160;
SOURCE = 80;

//RESET
SPI_RST = 1; //RA0
delay1(10);
SPI_RST = 0;
delay1(1000);
SPI_RST = 1;
delay1(10);

SPI_TFT009_WrCmd(0x11); //Sleep out
delay(120);

//ST7735S Frame Rate Setting in normal mode: fosc/ (((RTNA*2)+40)*(LINE+FPA+BPA+2))=80
SPI_TFT009_WrCmd(0xB1); // fosc=850KHz
SPI_TFT009_WriteData(0x08); // RTNA=5
SPI_TFT009_WriteData(0x3C); //20180612 // FPA=58
SPI_TFT009_WriteData(0x3C); //20180612 // BPA=58

//ST7735S Frame Rate Setting in idle mode: fosc/ (((RTNB*2)+40)*(LINE+FPB+BPB+2))=80
SPI_TFT009_WrCmd(0xB2); // fosc=850KHz
SPI_TFT009_WriteData(0x08); // RTNB=5
SPI_TFT009_WriteData(0x3C); //20180612 // FPB=58
SPI_TFT009_WriteData(0x3C); //20180612 // BPB=58

//ST7735S Frame Rate Setting in partial mode (dot inyerson): fosc/ (((RTNC*2)+40)*(LINE+FPC+BPC+2))=80
//ST7735S Frame Rate Setting in partial mode (column inyerson): fosc/ (((RTNC*2)+40)*(LINE+FPC+BPC+2))=80
SPI_TFT009_WrCmd(0xB3); // fosc=850KHz
SPI_TFT009_WriteData(0x08); // RTNC=5
SPI_TFT009_WriteData(0x3C); //20180612 // FPC=58
SPI_TFT009_WriteData(0x3C); // BPC=58
SPI_TFT009_WriteData(0x08); // RTND=5
SPI_TFT009_WriteData(0X3C); // FPD=58
SPI_TFT009_WriteData(0X3C); // BPD=58

//ST7735S Display Inversion Control
SPI_TFT009_WrCmd(0XB4); // Dot inversion: 20180409 modify from Sitronix initial code
SPI_TFT009_WriteData(0X07); // 0xB4[2]=Inversion setting in normal mode
 // 0xB4[1]=Inversion setting in idle mode
 // 0xB4[0]=Inversion setting in partial mode

//ST7735S Power on Sequence
SPI_TFT009_WrCmd(0XC0); // power control 1
SPI_TFT009_WriteData(0XB9); // \{Par.3[0], Par.1[4:0]\}=VRHP[5:0]=2−GVDD=4.6, Par.1[7:5]=AVDD
[2:0]=6−AVDD=5.1
SPI_TFT009_WriteData(0X09); // \{Par.3[1], Par.2[4:0]\}=VRHN[5:0]=2−GVCL=−4.6
SPI_TFT009_WriteData(0X04); // Par.3[7:6]=MODE[1:0]=2X
SPI_TFT009_WrCmd(0XC1); // power control 2
SPI_TFT009_WriteData(0XC5); // Par.1 [1:0]=VGHBT[1:0]=0−VGH=2*AVDD+VGH25−0.5
 // Par.1 [3:2]=VGLSEL[1:0]=0−VGL=−7.5
SPI_TFT009_WrCmd(0XC2); // power control 3
SPI_TFT009_WriteData(0X0D); // (Sitronix initial) \{Par.1 [7:6]=DCA[9:0]=00000000'b−Booster set up cycle BCLK/1 BCLK/3 BCLK/1 BCLK/1 BCLK/1 in normal mode
[7:6], Par.2[7:0]=DCA[9:0]=00000000'b−Booster set up cycle BCLK/1 BCLK/1 BCLK/1 BCLK/1 BCLK/1 in normal mode
SPI_TFT009_WrCmd(0XC0); // Par.1[5:3]=SAPA[2:0]=001'b− OP current is small in normal mode
SPI_TFT009_WriteData(0X00); // Par.1[2:0]=APA[2:0]=001'b− OP current is Large in normal mode
SPI_TFT009_WrCmd(0XC3); // power control 4
SPI_TFT009_WriteData(0X8D); // (Sitronix initial) \{Par.1 [7:6]=DCB[9:0]=1001101010'b−Booster set up cycle BCLK/2 BCLK/2 BCLK/2 BCLK/2 BCLK/2 in idle mode
[7:6], Par.2[7:0]=DCB[9:0]=1001101010'b−Booster set up cycle BCLK/2 BCLK/2 BCLK/2 BCLK/2 BCLK/2 in idle mode
SPI_TFT009_WrCmd(0X6A); // Par.1[5:3]=SAPB[2:0]=001'b− OP current is small in idle mode
SPI_TFT009_WriteData(0X6A); // Par.1[2:0]=APB[2:0]=011'b− OP current is Medium in idle mode
SPI_TFT009_WrCmd(0XC4); // power control 5
SPI_TFT009_WriteData(0X8D); // (Sitronix initial) \{Par.1 [7:6]=DCC[9:0]=1011101110'b−Booster set up cycle BCLK/2 BCLK/2 BCLK/2 BCLK/2 BCLK/4 BCLK/2 in partial mode
[7:6], Par.2[7:0]=DCC[9:0]=1011101110'b−Booster set up cycle BCLK/2 BCLK/2 BCLK/2 BCLK/2 BCLK/4 BCLK/2 in partial mode

SPI_TFT009_WriteData(0XEE); // Par.1[5:3]=SAPC[2:0]=001'b - OP current is small in partial mode

// ST7735S VCOM
SPI_TFT009_WrCmd(0XC5); // VCOM setting value
SPI_TFT009_WriteData(0X15); // 0XC5[5:0]=010010'b - VCOM=-0.875

// ST7735 Memory data access control: add from Sitronix initial code
SPI_TFT009_WrCmd(0X36); // VCOM setting value
SPI_TFT009_WriteData(0XC8); // ST7735 Display Inversion on
SPI_TFT009_WrCmd(0X21);

SPI_TFT009_WrCmd(0XE0); // Gamma setting value (Positive Polarity)
SPI_TFT009_WriteData(0X07); // Par.1[5:0]=VRF0P[5:0]=000011'b (Variable Resistor VRHP)
SPI_TFT009_WriteData(0X0E); // Par.2[5:0]=VOS0P[5:0]=001100'b (Variable Resistor VRLP)
SPI_TFT009_WriteData(0X08); // Par.3[5:0]=PK0P[5:0]=010100'b (Voltage of V3 grayscale)
SPI_TFT009_WriteData(0X07); // Par.4[5:0]=PK1P[5:0]=010100'b (Voltage of V4 grayscale)
SPI_TFT009_WriteData(0X10); // Par.5[5:0]=PK2P[5:0]=111111'b (Voltage of V12 grayscale)
SPI_TFT009_WriteData(0X07); // Par.6[5:0]=PK3P[5:0]=111111'b (Voltage of V20 grayscale)
SPI_TFT009_WriteData(0X02); // Par.7[5:0]=PK4P[5:0]=111111'b (Voltage of V28 grayscale)
SPI_TFT009_WriteData(0X07); // Par.8[5:0]=PK5P[5:0]=111111'b (Voltage of V36 grayscale)
SPI_TFT009_WriteData(0X09); // Par.9[5:0]=PK6P[5:0]=111111'b (Voltage of V44 grayscale)
SPI_TFT009_WriteData(0X0F); // Par.10[5:0]=PK7P[5:0]=111111'b (Voltage of V52 grayscale)
SPI_TFT009_WriteData(0X25); // Par.11[5:0]=PK8P[5:0]=111111'b (Voltage of V4 grayscale)
SPI_TFT009_WriteData(0X36); // Par.12[5:0]=PK9P[5:0]=111111'b (Voltage of V56 grayscale)
SPI_TFT009_WriteData(0X00); // Par.13[5:0]=SELV0P[5:0]=000000'b (Voltage of V0 grayscale)
SPI_TFT009_WriteData(0X08); // Par.14[5:0]=SELV1P[5:0]=000000'b (Voltage of V1 grayscale)
SPI_TFT009_WriteData(0X04); // Par.15[5:0]=SELV62P[5:0]=000000'b (Voltage of V63 grayscale)
SPI_TFT009_WriteData(0X10); // Par.16[5:0]=SELV63P[5:0]=000000'b (Voltage of V63 grayscale)

SPI_TFT009_WrCmd(0XE1); // Gamma setting value (Negative Polarity)
SPI_TFT009_WriteData(0X0A); // Par.1[5:0]=VRF0N[5:0]=000011'b (Variable Resistor VRHN)
SPI_TFT009_WriteData(0X0D); // Par.2[5:0]=VOS0N[5:0]=001100'b (Variable Resistor VRLN)
SPI_TFT009_WriteData(0X08); // Par.3[5:0]=PK0N[5:0]=010100'b (Voltage of V3 grayscale)
SPI_TFT009_WriteData(0X07); // Par.4[5:0]=PK1N[5:0]=010100'b (Voltage of V4 grayscale)
SPI_TFT009_WriteData(0X0F); // Par.5[5:0]=PK2N[5:0]=010100'b (Voltage of V12 grayscale)
SPI_TFT009_WriteData(0X07); // Par.6[5:0]=PK3N[5:0]=101111'b (Voltage of V20 grayscale)
SPI_TFT009_WriteData(0X02); // Par.7[5:0]=PK4N[5:0]=101010'b (Voltage of V28 grayscale)
SPI_TFT009_WriteData(0X07); // Par.8[5:0]=PK5N[5:0]=101111'b (Voltage of V36 grayscale)
SPI_TFT009_WriteData(0X09); // Par.9[5:0]=PK6N[5:0]=101110'b (Voltage of V44 grayscale)
SPI_TFT009_WriteData(0XOF); // Par.10[5:0]=PK7N[5:0]=101100'b (Voltage of V52 grayscale)
SPI_TFT009_WriteData(0X25); // Par.11[5:0]=PK8N[5:0]=111001'b (Voltage of V56 grayscale)
SPI_TFT009_WriteData(0X35); // Par.12[5:0]=PK9N[5:0]=111111'b (Voltage of V60 grayscale)
SPI_TFT009_WriteData(0X00); // Par.13[5:0]=SELV0N[5:0]=000000'b (Voltage of V0 grayscale)
SPI_TFT009_WriteData(0X09); // Par.14[5:0]=SELV1N[5:0]=000000'b (Voltage of V1 grayscale)
SPI_TFT009_WriteData(0X04); // Par.15[5:0]=SELV62N[5:0]=000001'b (Voltage of V62 grayscale)
SPI_TFT009_WriteData(0X10); // Par.16[5:0]=SELV63N[5:0]=001001'b (Voltage of V63 grayscale)

SPI_TFT009_WrCmd(0XFC); // Enable Gate power save mode
SPI_TFT009_WriteData(0XCO); // 0XFC[7:6]=GCV_Enable[1:0]=10'b—Gate Pump Clock Frequency disable
SPI_TFT009_WrCmd(0X3A); // 65K Mode
SPI_TFT009_WriteData(0X05); // 65K Mode
SPI_TFT009_WrCmd(0X2A); // 65K Mode
SPI_TFT009_WriteData(0X00); // 65K Mode
SPI_TFT009_WriteData(0X1A); // 65K Mode
SPI_TFT009_WriteData(0X00); // 65K Mode
SPI_TFT009_WriteData(0X69); // 65K Mode

SPI_TFT009_WrCmd(0X2B); // 6
SPI_TFT009_WriteData(0X00); //
SPI_TFT009_WriteData(0X01); //
SPI_TFT009_WriteData(0X00); //
SPI_TFT009_WriteData(0XA0); //

SPI_TFT009_WrCmd(0X29); // Display on
12. Contour Drawing EA TFT009-81AINN

The non-specified tolerance of dimension is ± 0.3 mm.